
Dynamic Invariant Detection for Relational Databases

Jake Cobb
Georgia Institute of

Technology
jake.cobb@gatech.edu

Gregory M. Kapfhammer
Allegheny College

gkapfham@allegheny.edu

James A. Jones
University of California, Irvine

jajones@ics.uci.edu

Mary Jean Harrold
Georgia Institute of

Technology
harrold@cc.gatech.edu

ABSTRACT
Despite the many automated techniques that benefit from
dynamic invariant detection, to date, none are able to cap-
ture and detect dynamic invariants at the interface of a pro-
gram and its databases. This paper presents a dynamic
invariant detection method for relational databases and for
programs that use relational databases and an implemen-
tation of the approach that leverages the Daikon dynamic-
invariant engine. The method defines a mapping between re-
lational database elements and Daikon’s notion of program
points and variable observations, thus enabling row-level and
column-level invariant detection. The paper also presents
the results of two empirical evaluations on four fixed data
sets and three subject programs. The first study shows that
dynamically detecting and inferring invariants in a relational
database is feasible and 55% of the invariants produced for
each subject are meaningful. The second study reveals that
all of these meaningful invariants are schema-enforceable us-
ing standards-compliant databases and many can be checked
by databases with only limited schema constructs.

Categories and Subject Descriptors: D.2.4 [Software
Engineering]: Software/Program Verification; H.2.1
[Database Management]: Schema and subschema; F.3.1
[Logic and Meanings of Programs]: Specifying and Ver-
ifying and Reasoning about Programs-Invariants

General Terms: Reliability, Verification

Keywords: Dynamic invariants, relational databases,
schema modification

1. INTRODUCTION
Dynamic invariants are properties of program state that

are observed to hold during one or more executions of the
program. Dynamic invariants are also called likely invari-
ants because they are guaranteed to hold only over this set of
executions instead of over all possible executions. Dynamic

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WODA ’11 July 18, 2011, Toronto, Canada
Copyright 2011 ACM 978-1-4503-0811-3/11/07 ...$10.00.

invariants form an operational abstraction that is useful for
understanding program behavior [13].1

Dynamic invariant detection, introduced by Ernst and col-
leagues and implemented as the Daikon invariant detec-
tion engine2 [8], has been applied successfully to support
a number of software-engineering tasks. Examples of such
tasks include component integration testing [12], interface
discovery [6], test-input generation [14], and software-behav-
ior classification [5]. In addition to the internal in-memory
state recorded by Daikon, many applications rely heavily
on external state, such as configuration files and database
systems. In particular, relational database management sys-
tems (RDBMS) based on the structured query language
(SQL) standard are often used in a wide variety of appli-
cations [7, 11]. Yet, existing techniques do not compute
dynamic invariants for the properties of external state.

To address this limitation of previous techniques, we de-
veloped, and present in this paper, a new approach to dy-
namic invariant detection for relational databases and pro-
grams that use relational databases. Our approach is based
on the existing dynamic invariant detection techniques de-
veloped for the intra-program level. Although the Daikon
dynamic detection approach was originally developed to
compute invariants using a program’s state, our implemen-
tation leverages this framework because its extensible design
supports importing data from other sources [9].

Our technique captures invariants in the state of relational
database tables for both application-independent, fixed data
sets and dynamic data sets induced by interaction with an
RDBMS during program execution. The technique is able
to detect invariants for both individual columns across all
rows and across multiple columns within a given row.

The main benefit of our new technique is that it collects
dynamic invariants for relational databases and dependent
applications, thus bringing to the database context a broad
family of existing techniques for software-engineering tasks.
Additionally, our method supports a new set of database-
specific client applications. Section 4.2.2 presents one such
application: the use of database invariants to suggest schema
modifications that increase data integrity guarantees.

The main contributions of this paper are:

• A new technique that extends the notion of dynamic
invariant detection to SQL-based relational databases
and the applications that employ them.

1We use invariant to refer to dynamic invariants.
2Hereafter, we simply call this system Daikon.



DBMSScan DB State

Read Schema

Infer Invariants

Instrumentation 
Wrapper

Program

Collect Trace

Application-independent, Fixed Data Application-specific, Dynamic Data

Schema, Type
Metadata

Schema, Type
Metadata

All Rows,
Columns

Inserted,
Updated

Rows

Schema

Data Trace

Inferred Invariants

Figure 1: Process diagram depicting the database-
aware approach. The left side shows the static,
application-independent process, and the right side
shows the dynamic, application-specific process.

• An implementation that analyzes existing databases
and the Java applications that utilize these databases
to automatically produce files for input to Daikon.

• Two empirical studies using seven subjects, one of
which analyzes the quality of invariant detection and
the other of which examines a database-specific appli-
cation for schema constraint modification.

2. DATABASE-AWARE APPROACH
Program invariants are typically defined in terms of spe-

cific program points, which are points of interest in the pro-
gram, along with the program state, which is usually the
set of program variables that are observable at those points.
For example, a developer might specify the program-points
to be method entries and the program state to be parame-
ters of the respective methods. In this case, given a method
entry void foo(int x, int y) and a set of executions, the
invariant x < y means that the value of x was always less
than the value of y at the entry to foo on those executions.

To enable detection of the dynamic invariants, the pro-
gram points can be instrumented to collect the program
state. Then, the instrumented program is executed with
some set of inputs (e.g., a test suite) to produce a data trace,
which is a record of the variable values observed at program
points. Potential invariants are tested against the values in
the data trace. The final result is the set of invariants that
were not falsified during any execution.

Our approach, which is depicted in Figure 1, offers two
complementary options for collecting invariants in the con-
text of a relational database. The first option is to infer in-
variants statically from the state of the database at a given
point in time, independent of any program execution. The
second option is to monitor the interactions between a pro-

Table 1: Mapping between database structure and
program elements

Program Element Database Element
Program Point Table
Variable Column
Occurrence Row

gram and its databases and infer invariants from the dy-
namic state of the database during program execution. The
first option is useful for data sets that are not managed by
an application, are shared by multiple applications, or are
managed by an application that cannot be instrumented.
The second option is useful when a data set is managed by
a single application that is able to be instrumented.

For both options supported by our approach, Figure 1
shows that invariant detection begins by reading the
database schema (Read Schema) to obtain structural and
type information; we define and discuss the structural map-
ping between relational databases and program points and
variables in Section 2.1. In the static case, Scan DB State
reads the entire state of the database and produces a data
trace. In the dynamic case, the Instrumentation Wrapper
monitors communication between the database and the pro-
gram and produces data traces that correspond to only new
or modified rows after an initial full-state trace; we explain
the representation of individual data elements in the data
traces in Section 2.2. In either case, Collect Trace aggregates
the data traces and Infer Invariants processes the data and
yields the set of inferred invariants.

2.1 Structural Mapping
As shown in Table 1, our technique maps the database

schema and structure to program concepts. The database-
aware method considers each table in the database to
be equivalent to an independent, non-hierarchical program
point. The columns defined in the schema of each table
are equivalent to named program variables. The technique
treats each row of data in a database table as an occurrence
or observation of variable values at a program point.

We chose to represent the relational database structure
in this way to facilitate detection of two general classes of
invariants. The first class consists of single-variable invari-
ants that indicate a property that was universally true for a
database column. For example, table.a_count > 0 means
that the value of the a_count column was always positive.
The second class consists of multi-variable invariants that
indicate a property that was true within each row. For ex-
ample, table.a_count < table.b_count means the value
of the a_count in a given row was always less than the value
of b_count in that same row, not that each observed value
of a_count was less then all observed values of b_count.

2.2 Data Representation
The SQL standard [10] defines a number of specific data

types that are organized into broader categories such as
strings and numbers. To reduce both the potential for spu-
rious invariants and the computational cost, our technique
uses type information to restrict the columns that may be
tested for invariant relationships. Table 2 gives the compa-
rable groups along with the SQL types that determine mem-
bership. In the table, the first two columns show the group
number and a descriptive name, respectively. The third col-



Table 2: Data type mapping and comparability
Group Name SQL Types Java Type

1 Text
CHAR

StringVARCHAR
TEXT

2 Integer
INTEGER

intNUMERIC
BIT3

3 Decimal

FLOAT

double
DOUBLE
REAL
DECIMAL

4 Binary BLOB
byte[]

BIT4

5 Text Set SET String[]

6 Datetime
DATETIME

String
TIMESTAMP

7 Date DATE String
8 Time TIME String
9 Interval INTERVAL int

10 Primary Key INTEGER5 reference

umn lists the SQL types that belong to a group. The last
column shows an equivalent type from the Java program-
ming language. Comparisons for testing potential invariants
can be thought of in terms of this type, with intra-group
SQL type representations being converted if necessary. All
columns in a given comparability group are comparable to
each other, but not to members of other groups. Columns
that are equivalent to an array type in Java also allow com-
parison of the respective elements to another group. Specif-
ically, elements of the Binary group (4) are comparable to
Integer group (2) members and elements of the Text Set
group (5) are comparable to the Text group (1).

Although Table 2 shows the major SQL types for each
group, the list is not exhaustive. Our technique groups SQL
types that are a size variation on one of the listed types with
the listed type. For example, SMALLINT is a size-variation of
INTEGER and thus, it is placed in group 2. Additionally, in-
dividual relational database implementations support many
non-standard types. Our technique places vendor-specific
types in the group that most closely matches the data rep-
resented by that type. For example, the ENUM type supported
by MySQL and the CLOB type supported by Oracle would
be included in the Text group (1).

Although grouping and converting most types is straight-
forward, a few points are worth mentioning. Our technique
represents binary values (group 4) as an array of bytes where
each element is the value of a single byte in the same order
as the binary stream. Although they are represented as
Strings, our technique groups dates and times separately
from other textual types. Intuitively, dates and times have
specific semantics that general text does not. For example,
the hypothetical invariant start_date != end_date is po-
tentially interesting whereas start_date != description

is almost certainly spurious. In general, the purpose of
comparable groups is to avoid detecting invariants between
columns that cannot be meaningfully compared.

In the relational model, NULL is a special value that rep-
resents unknown or missing data. Whether or not NULL is

3When defined with a length in int range.
4When defined with a length outside of int range.
5Only when used as a PRIMARY KEY.

a potential column value is defined by the database schema
and does not depend on the data type of the column. To
capture this property, our technique introduces a synthetic
variable that represents the “NULL-ness” of the column value.
The synthetic variable is equivalent to a pointer or reference
type in a programming language, but it takes on only the
value null,6 when the corresponding column is NULL, or a
constant value, when the column has a non-NULL value. Syn-
thetic variables are introduced only for columns in which the
schema permits NULL, thus preventing never-null invariants
from being produced for columns that forbid NULL values.

There is one exception to the aforementioned type map-
ping rules for integer primary keys. It is common for a
table’s schema to use an integer as the primary key and
to have the RDBMS automatically assign a unique value
to it on the insertion of a new row. Thus, our technique
treats columns that are integer primary keys like pointers or
references instead of normal integers, and it introduces no
synthetic variable even if the schema allows NULL values.

3. IMPLEMENTATION
Our implementation consists of two main components.

The first is a Python program that collects data traces from
relational databases and implements the mapping described
in Section 2. The second is an extension of the P6Spy [4]
database driver for Java that the technique uses to capture
database invariants from Java programs.

3.1 Data Tracing
We implemented data trace collection and the mapping

described in Section 2 as a Python program that produces
Daikon declaration and trace files from an existing database
instance. Given database connection information, it reads
the schema information and constructs an internal repre-
sentation of the tables and columns, including information
such as the representation type, conversion routine, and syn-
thetic NULL variables. When this information is first read,
the data trace program writes a Daikon declarations file to
disk and serializes the internal structure for reuse during
tracing. The program writes Daikon declarations files in
the 2.0 format.7 It supports MySQL directly and handles
several other databases through use of SQLAlchemy.

The program produces Daikon trace files by selecting all
rows in the database and writing them to file according to
the schema information read earlier. Because Daikon uses
a text-based trace format, each representation type has a
conversion function that transforms the data appropriately.
For example, a BLOB column entry containing two 0-valued
bytes must be written as [0 0]. By default, the trace file is
filtered through GZip before being written to disk.

3.2 Database Driver Modification
P6Spy [4] is a JDBC driver for Java that wraps another

JDBC driver and provides logging of SQL statements or re-
sult sets that it passes between the calling application and
the driver it wraps. We wrote a new module for P6Spy
and made some adjustments to its core to capture database
values as they are changed by an application.

When a new connection is opened, our driver retains the
connection information and invokes the data trace program

6
NULL refers to the SQL type and null refers to the Java type.

7For compatibility, we implemented support for the 1.0 format as
well, but did not use it for the experiments in this paper.



Table 3: Fixed data set subjects
Subject Tables Columns Rows

world 3 24 5302
menagerie 2 10 19

sakila 23 131 50,086
employees 6 24 3,919,015

Table 4: Java application subjects
Test

Subject Tables Columns KLOC Cases
iTrust 30 177 25.5 (Java) 787

8.6 (JSP)
JWhoisServer 7 57 6.7 67

JTrac 13 126 12 41

described in Section 3.1 to read the metadata and produce
a declarations file and an initial data trace. If the schema
information has already been gathered, the data trace pro-
gram does not rewrite the declarations file or append to the
trace. For all subsequent calls, the modified driver inspects
the SQL statement to determine whether it may result in a
new trace value. If an INSERT or UPDATE statement is exe-
cuted, the driver invokes the data trace program to append
trace values for the modified table before returning control to
the caller. The driver does not request traces after DELETE

or TRUNCATE statements because they cannot add any ob-
served values. If the driver cannot determine whether or
not a database call inserted or updated data (e.g., when a
stored procedure is executed), it conservatively invokes the
data trace program to append trace data for all tables.

4. EMPIRICAL STUDIES
This section presents the results of the empirical studies

that we performed to evaluate our technique. First, Sec-
tion 4.1 describes the empirical setup we used for the stud-
ies. Then, Sections 4.2.1 and 4.2.2 describe the two studies
we performed to evaluate the invariants produced.

4.1 Empirical Setup
We evaluated our technique using seven subjects. The first

four subjects are sample databases provided by MySQL.8

We selected these subjects to evaluate whether meaningful
invariants could be extracted from a database snapshot inde-
pendent of a particular application’s use of the database. Ta-
ble 3 shows, for each of these subjects, the number of tables,
columns, and rows in the second, third, and fourth columns,
respectively. The world and menagerie databases contain
information about international cities and a pet shop, re-
spectively. The employees database contains employment
data that might be used in a human resources application,
and the sakila database contains data that models a video
store chain. Both employees and sakila are used for the
testing and verification of MySQL.

The last three subjects are applications that are written
in Java and use a relational database. We selected these
subjects to investigate whether meaningful invariants could
be detected during dynamic modification of the data by a
particular application. Each Java subject includes an au-
tomated test suite with test cases that interact with the
respective databases. Table 4 shows, for each application,
the number of tables and columns in the second and third
columns, respectively, and the sizes of the code base and
the test suite in the fourth and fifth columns, respectively.

8Available from http://dev.mysql.com/doc/index-other.html.

iTrust [1] is a web application that handles medical infor-
mation, such as patient records.9 iTrust uses MySQL as its
RDBMS. JWhoisServer [3] is an open source implementa-
tion of the WHOIS protocol. JWhoisServer supports several
different database systems. For this study, we configured
JWhoisServer to use MySQL. JTrac [2] is an open source
web application for customizable issue-tracking. JTrac sup-
ports integration with a number of external components,
such as LDAP. JTrac uses the Hibernate Object-Relational
Mapping framework, which provides JTrac with support for
a number of database systems. For the study, we configured
Hibernate to use MySQL as the back-end RDBMS.

We used the tools described in Section 3 to generate
Daikon declarations and trace files. For the fixed data sets,
we ran the data trace program described in Section 3.1
against the populated databases. For the Java subjects,
we configured each application to use the modified P6Spy
driver from Section 3.2 and then executed their respective
test suites. We then ran Daikon on the resulting declara-
tions and trace files, using the default configuration options,
to produce a set of dynamic invariants for each subject. We
experimented with enabling additional invariant checks and
modifying parameters to the invariant checkers, but found
this tends to help detection for some subjects at the expense
of others. For this reason, we report only those results based
on the default configuration that Daikon would use without
manual tuning by the user. As mentioned in Section 5, we
intend to further investigate additional invariant checking
and parameter modification as part of future research.

4.2 Studies
We performed two studies to evaluate our technique. Af-

ter analyzing the quality of the dynamic invariants, Sec-
tion 4.2.1 illustrates the method’s trade-offs by giving several
concrete examples. Then, Section 4.2.2 evaluates the use of
invariants for database schema constraint modification.

4.2.1 Study 1: Invariant Quality
The goal of the first study is to assess both the quan-

tity and quality of dynamic invariant detection for relational
databases. We produced invariants for each subject as de-
scribed in Section 4.1. We manually inspected every invari-
ant and identified two classes of spurious invariants, which
we call vacuous and lack-of-data. Vacuous invariants ex-
press relationships between variables that have no semantic
relationship to each other. Lack-of-data invariants occur be-
cause of a limited number of supplied input values; the most
common form of lack-of-data invariant is variable equality
with a literal value. We classified invariants as spurious by
comparing each with the database schema and relevant test
data set from the respective subjects.

Figure 2 shows the number of dynamically detected in-
variants, with the subjects listed on the vertical axis and the
number of invariants shown on the horizontal axis. The bar
for each subject is segmented by the number of invariants
that we classified as vacuous, lack-of-data, or meaningful.

Overall, the invariant results were good across the set of
subjects with the notable exception of JWhoisServer. The
majority of dynamic invariants detected were not spurious.
However, there is not a clear relationship between the to-

9iTrust was developed to support instruction in testing at North
Carolina State University, and is currently maintained by the
RealSearch group (http://agile.csc.ncsu.edu/realsearch).



Number of Invariants

employees

world

menagerie

JWhoisServer

JTrac

sakila

iTrust

0 50 100 150

Type of Invariant
Vacuous Lack−of−data Meaningful

Figure 2: Dynamic invariants detected

tal number of invariants detected and the quality of those
invariants. The employees database had the least num-
ber of invariants, but had no spurious invariants of either
type. Most of the invariants for employees are relationships
between dates which reflect the semantic meaning of the
columns. Examples of meaningful invariants include:

• dept_emp.from_date <= dept_emp.to_date

• employees.gender one of { "F", "M" }

• employees.birth_date < employees.hire_date

Although compared as strings, dates are formatted accord-
ing to ISO 8601 so the ordering expressed in these invariants
reflects a chronological relationship.

JWhoisServer had the highest percentage of spurious in-
variants due to lack of data because it uses a very small set
of test data. Examples of lack-of-data invariants include:

• mntnr.login == "mntnt"

• inetnum.changed == "2006-10-14 16:21:09"

• person.pcode one of { "D-12345", "NWR" }

However, even in the case of JWhoisServer, the high number
of lack-of-data invariants is useful information as it indicates
the very limited data set used by the test suite.

Although it also had many meaningful invariants, iTrust
fared the worst overall in terms of the percentage of vacuous
invariants. iTrust also has lack-of-data invariants for the
same reason as JWhoisServer in that it reuses the same test
data for many different tests. Because iTrust uses database
tables with a large number of comparable columns, it also
ends up with many other spurious invariants. Examples of
vacuous invariants include:

• patients.lastName >= patients.address1

• patients.phone1 <= patients.BloodType

• cptcodes.Description != cptcodes.Attribute

There is clearly no semantic relationship between a patient’s
phone number and blood type. However, these columns were
compared because both were defined as textual, resulting
in the meaningless, although true, lexicographical order ex-
pressed in this dynamic invariant.

The excellent quality of the employees invariants hints at
two important aspects of invariant detection: large enough
samples and a wide variety of data. Each of the Java sub-
jects re-used small sets of test data, which was reflected in
the presence of spurious invariants.

4.2.2 Study 2: Schema Enforcement
The goal of this study is to evaluate the effectiveness of

applying the invariants for data integrity through database

Percentage of Meaningful Invariants

JWhoisServer

menagerie

JTrac

employees

iTrust

world

sakila

0.0 0.2 0.4 0.6 0.8 1.0

Type of Meaningful Invariant
Enforceable with Standards−Compliant Database
Enforceable with Current Database
Already Enforced

0

0
0

Figure 3: Schema enforcement of dynamic invariants

schema modification. The schema of a relational database
specifies constraints on the values of its constituent columns,
both through the SQL type and by auxiliary constraints
such as NOT NULL. There may also be implicit constraints on
the data that are assumed or enforced by the database user.
Making these implicit constraints explicit in the schema pro-
vides a much stronger assurance of data integrity as the
RDBMS will enforce the constraints and reject data that
violates a schema constraint.

Using the same subjects and invariants as our first study,
we manually inspected each invariant and identified those
that could possibly be enforced by the relational database’s
schema. For each potentially enforceable invariant, we com-
pared it with the schema definition to see if it could be en-
forced by modifying the schema or it reflected a constraint
that was already explicit in the schema.

Figure 3 shows the proportion of invariants in each cat-
egory, with the subjects listed on the vertical axis and the
percentage of invariants shown on the horizontal axis. For
each subject, the black, bottommost bar shows the percent-
age of invariants that were already enforced by the schema
and the dark-gray, middle bar shows the percentage of in-
variants where we recommend a schema modification to en-
force the invariant. We took into account the results of
Section 4.2.1 when deciding whether a schema modification
was appropriate. For example, we did not include a (NULL-
able) column that was never NULL when the table to which
it belongs suffered lack-of-data invariants. For this reason,
the percentages shown in Figure 3 are relative to the total
number of invariants remaining after removing the spurious
invariants from the first study. Additionally, we only sug-
gest schema modification for constraints that are supported
by the specific RDBMS used by the respective subjects. For
example, virtually all of the invariants could be enforced by
a CHECK constraint, but MySQL does not support the CHECK

constraint so we do not count these invariants in the En-
forceable bar for subjects that used MySQL. The light-gray,
topmost bar for each subject in Figure 3 reflects the fact
that all of these invariants could be enforced by an RDBMS
that complies with the SQL standard [10].

Common examples of schema-enforced invariants include
positive integers where the type was unsigned and fixed sets
of string values resulting from ENUMs. Table 5 contains sev-
eral examples of invariants that were already enforced by
the database schema. In future work, it would be straight-
forward to filter out invariants already in the schema.

Table 6 shows examples of schema modifications that en-
force invariants. Adding a NOT NULL constraint to a column



Table 5: Example invariants enforced by the schema
Subject Invariant Schema Definition
employees employees.gender one of { "F", "M" } ENUM(’F’,’M’)
world countrylanguage.IsOfficial one of { "F", "T" } ENUM(’F’,’T’)
sakila customer.active one of { 0, 1 } TINYINT(1)
sakila inventory.film_id >= 1 SMALLINT(5) UNSIGNED
JTrac spaces.guest_allowed one of { 0, 1 } BIT(1)

Table 6: Example schema modifications for invariant enforcement
Subject Invariant Original Schema Modified Schema
iTrust isnull(message.message) != null TEXT TEXT NOT NULL
sakila isnull(film_text.description) != null TEXT TEXT NOT NULL
JTrac isnull(history.time_stamp) != null DATETIME DATETIME NOT NULL
JTrac user_space_roles.user_id >= 1 BIGINT(20) BIGINT(20) UNSIGNED
menagerie pet.sex one of { "f", "m" } CHAR(1) ENUM(’M’,’F’)
world country.Population >= 0 INT(11) INT(11) UNSIGNED
employees isnull(titles.to_date) != null DATE DATE NOT NULL

definition is one of the most common possible schema modifi-
cations. Because synthetic variables are introduced to repre-
sent NULL values only for columns without the NOT NULL con-
straint, invariants of the form isnull(column) != null10

are never the result of already existing schema enforcement.

5. CONCLUSION AND FUTURE WORK
This paper extends the notion of dynamic invariant de-

tection from software programs to relational databases and
programs that use relational databases. We defined a map-
ping between relational database structure and data types
to enable dynamic invariant detection with the Daikon en-
gine. We also conducted two empirical studies and provided
analyses that demonstrate the feasibility of collecting mean-
ingful invariants for four fixed data sets and three subject
programs. Finally, we showed that dynamic invariants for
relational databases can be effectively used to identify areas
where the database schema constraints could be tightened
to protect data integrity.

Whereas this paper provides a good baseline for integra-
tion of dynamic invariant detection with relational database
models, there are a number of areas for future work. First,
the mapping of the database structure could be extended to
allow for additional invariant detection on relationships be-
tween columns in different tables or for the results of JOINs
executed by a particular application. Second, additional in-
formation could be used to filter or enhance the invariants
that we are testing. For instance, schema or WHERE-clause
enforced invariants could be removed from consideration,
allowing the rest of the schema-enforceable invariants to be
presented to the user as suggestions for schema modification.

Third, the studies presented in this paper do not address
the performance of the implementation. As such, we in-
tend to create efficient techniques for capturing values as
they flow through the database driver, rather than consult-
ing the RDBMS after a modification. Moreover, because
our preliminary experiments suggest that the tuning of the
parameters of the invariant checkers had an unpredictable
impact on the subjects, we will focus on this issue in a more
comprehensive empirical study. Finally, the various applica-
tions of dynamic invariant detection in software engineering,
such as component integration testing and test-case gener-
ation, could be applied in the relational database context.

10The synthetic variables are shown this way for clarity; they are
named differently in the implementation

Combining the technique presented in this paper with our
future work will result in a complete and efficient engine for
dynamic invariant detection with both databases and the
programs that interact with databases.

6. REFERENCES
[1] iTrust. http://agile.csc.ncsu.edu/iTrust.

[2] JTrac. http://www.jtrac.info.

[3] JWhoisServer. http://jwhoisserver.net/.

[4] P6Spy. http://www.p6spy.com/.

[5] J. F. Bowring, M. J. Harrold, and J. M. Rehg.
Improving the classification of software behaviors
using ensembles of control-flow and data-flow
classifiers. Technical Report GIT-CERCS-05-10.

[6] C. Csallner and Y. Smaragdakis. Dynamically
discovering likely interface specifications. In
Proceedings of the 28th ICSE, 2006.

[7] R. Elmasri and S. B. Navathe. Fundamentals of
Database Systems. Addison Wesley, fifth edition, 2007.

[8] M. D. Ernst, J. Cockrell, W. G. Griswold, and
D. Notkin. Dynamically discovering likely program
invariants to support program evolution. Transactions
on Software Engineering, 27(2), 2001.

[9] M. D. Ernst, J. H. Perkins, P. J. Guo, S. McCamant,
C. Pacheco, M. S. Tschantz, and C. Xiao. The Daikon
system for dynamic detection of likely invariants.
Science of Computer Programming, 69(1–3):35–45,
Dec. 2007.

[10] International Organization for Standardization.
ISO/IEC 9075:1992: Title: Information technology —
Database languages — SQL. 1992.

[11] G. M. Kapfhammer. A Comprehensive Framework for
Testing Database-Centric Applications. PhD thesis,
University of Pittsburgh, 2007.

[12] L. Mariani, S. Papagiannakis, and M. Pezzè.
Compatibility and regression testing of
COTS-component-based software. In Proceedings of
the 29th ICSE, 2007.

[13] S. McCamant and M. D. Ernst. Predicting problems
caused by component upgrades. In Proceedings of the
9th ESEC and the 11th FSE, 2003.

[14] C. Pacheco and M. D. Ernst. Eclat: Automatic
generation and classification of test inputs. In
Proceedings of the 19th ECOOP, 2005.


