
An Empirical Study of Incorporating Cost into Test Suite
Reduction and Prioritization

Adam M. Smith
Department of Computer Science

University of Pittsburgh
ams292@cs.pitt.edu

Gregory M. Kapfhammer
Department of Computer Science

Allegheny College
gkapfham@allegheny.edu

ABSTRACT
Software developers use testing to gain and maintain confi-
dence in the correctness of a software system. Automated
reduction and prioritization techniques attempt to decrease
the time required to detect faults during test suite execution.
This paper uses the Harrold Gupta Soffa, delayed greedy,
traditional greedy, and 2-optimal greedy algorithms for both
test suite reduction and prioritization. Even though reduc-
ing and reordering a test suite is primarily done to ensure
that testing is cost-effective, these algorithms are normally
configured to make greedy choices with coverage informa-
tion alone. This paper extends these algorithms to greedily
reduce and prioritize the tests by using both test cost (e.g.,
execution time) and the ratio of code coverage to test cost.
An empirical study with eight real world case study appli-
cations shows that the ratio greedy choice metric aids a test
suite reduction method in identifying a smaller and faster
test suite. The results also suggest that incorporating test
cost during prioritization allows for an average increase of
17% and a maximum improvement of 141% for a time sen-
sitive evaluation metric called coverage effectiveness.

Categories and Subject Descriptors: D.2.5 [Software
Engineering][Testing and Debugging][Testing tools]

General Terms: Experimentation, Performance

Keywords: regression testing, reduction, prioritization

1. INTRODUCTION
Since developers inevitably introduce errors while imple-

menting software systems, they often use software testing to
detect and isolate these defects. As the source code grows in
size, test cases are written for the new functionality. How-
ever, these new tests do not obviate the old ones. In an
attempt to ensure both the correctness of new code and its
proper integration into the system, every old test is exe-
cuted in a regression test suite T = 〈t1, t2, t3, . . . , tn〉. The
repeated execution of T is known as regression testing [4,
16, 17]. When a test suite becomes too large to run in a
cost-effective fashion, reduction [4] and prioritization [16]
methods can alter the test suite in order to address this is-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC ’09 March 8-12, 2009, Honolulu, Hawaii, USA
Copyright 2009 ACM 978-1-60558-166-8/09/03 ...$5.00.

sue. Reduction produces a smaller test suite Tr by removing
tests from T , with the intent of decreasing its execution time
while preserving the coverage of the test requirements. Test
suite prioritization produces Tp by reordering T and thus
allowing for an execution order that is more likely to find
defects faster than the original test suite.

This paper describes the extension and empirical evalua-
tion of the Harrold Gupta Soffa (HGS) [4], delayed greedy
(DGR) [18], traditional greedy (GRD) [9], and 2-optimal
greedy (2OPT) [9] algorithms. HGS and DGR use coverage
information to make intelligent decisions before they make
a greedy choice, GRD is a standard greedy algorithm, and
2OPT is a greedy algorithm that performs all-pairs compar-
isons. HGS and GRD are commonly used techniques for
reduction while the DGR reducer can determine whether or
not its reduced test suite is optimally small. Beyond in-
corporating test case cost (e.g., test execution time), our
implementations repeatedly invoke a reduction algorithm in
order to prioritize test suites, as described in Section 2.

Traditional implementations of test suite reduction and
prioritization methods may not incorporate test cost into
a greedy choice metric (GCM). For instance, Li et al. de-
scribe a greedy prioritizer that iteratively selects the test
case that covers the most uncovered test requirements [9]
and Harrold et al. reduce a test suite by exclusively focusing
on coverage information [4]. Yet, variability in test case cost
suggests that the test with the most coverage may not be
the best option for either inclusion in a reduced test suite
or early placement in a prioritized one [5, 6, 10, 17]. Since
the purpose of both reduction and prioritization is to save
software testers time by finding faults sooner, not in less test
cases, our extended algorithms use GCMs that consider test
coverage, test case cost, and the ratio of coverage to cost
(hereafter referred to as ratio). Our work is distinguished
from [10] because we (i) use coverage effectiveness (CE) [6]
to evaluate a prioritized test suite, (ii) consider four different
reduction algorithms (e.g., HGS, DGR, GRD, and 2OPT)
and extend their functionality to use cost, coverage, and ra-
tio for greedy choices, (iii) perform both reduction and pri-
oritization on the JUnit test suites for object-oriented Java
programs, and (iv) do not require the use of faults in either
the test adequacy criterion or the evaluation metrics.

The test suite in Table 1(a) furnishes a motivating exam-
ple for incorporating test case execution time into greedy
choices. In this table each row represents a test, a column
corresponds to a test requirement, and an “X” shows when a
test covers a requirement. Table 1(b) shows that using GRD
to reduce this test suite based on coverage alone yields a test

r1 r2 r3 r4 r5 Execution Time

t1 X X X X 4
t2 X X 1
t3 X 1
t4 X X 1

(a)

Greedy-by Tr time(Tr) Tp CE

coverage 〈t1, t4〉 5 〈t1, t4, t2, t3〉 0.400
time 〈t2, t3, t4〉 3 〈t2, t3, t4, t1〉 0.714
ratio 〈t2, t4, t3〉 3 〈t2, t4, t3, t1〉 0.743

(b)

Table 1: Reduction and Prioritization Example.

suite that contains only two test cases and executes in five
time units. However, reducing based on ratio or time pro-
duces test suites containing three test cases that execute in
only three units of time. If testing time is limited, then often
it is better for developers to use a test suite with more test
cases and a short execution time than a smaller test suite
that takes longer to run. Therefore, reducing with time or
ratio may produce test suites that are more desirable than
reducing with just coverage. Similarly for prioritization, us-
ing time or ratio for greedy choices allows for better priori-
tized test suites as defined by the “higher is better” coverage
effectiveness metric explained in Section 3. In summary, the
important contributions of this paper include:

1. The implementation and extension of four existing al-
gorithms for regression testing. Each algorithm origi-
nally reduced using only coverage, but this paper also
uses test cost and the ratio of coverage to test cost.

2. An experimental analysis of the effectiveness of each
regression testing technique on eight case study ap-
plications. The evaluation metrics, reduction factor
for time (RFFT) and CE (see Section 3 for more de-
tails), identify reduced and prioritized test suites that
decrease testing time while still preserving the cover-
age of test requirements. The experiments reveal fun-
damental trade-offs associated with incorporating test
cost into regression testing:

(a) HGS creates reduced test suites with the greatest
average RFFT, but DGR, 2OPT, and GRD each
perform closely to HGS.

(b) Similarly for the reduction factor for size (RFFS)
metric, DGR, HGS, and GRD obtain the highest
average values, but 2OPT was not far behind.

(c) Using the intrinsically coverage-based techniques
(i.e., HGS and DGR) often leads to orderings with
modest coverage effectiveness values.

(d) The 2OPT and GRD prioritizers obtain the high-
est average CE values, with a 28% improvement
over HGS and a 17% increase over DGR.

2. REGRESSION TESTING
Test Adequacy. Test suites allow developers to exe-

cute application code in a selective manner, with each test
normally designed for an individual aspect of the program.
In the context of this paper, a test suite refers to a Java
class that is executed by a Java testing framework called
JUnit (http://www.junit.org) and a test case refers to a
method in that test class. Given a test suite T , a test

Original Test Suite

First Output First Residual Second Output

Prioritized Test Suite

Reduction Technique

PSfrag replacements

t4
t3
t2
t1
t4
t1
t3
t2
t2
t3

t2

t2

t2t2

t3

t3t3

t3

t4

t4

t4

t1

t1

t1

Figure 1: Prioritization by Repeated Reduction.

coverage monitor identifies a set of covered requirements
R(T) = {r1, r2, . . . , rm}. Each test ti is associated with
a subset of requirements R(ti) ⊆ R(T) that ti is said to
cover. A coverage monitor also determines the covered by

relationship that associates a requirement rj with a set of
tests T (rj) ⊆ T such that rj is covered by each test in T (rj).

McMaster and Memon present a test adequacy criterion
that measures method coverage in the context in which the
methods were invoked during testing [12]. A coverage re-
port for this criterion corresponds to a calling context tree
(CCT) that represents the dynamic behavior of the program
while a test suite runs. Each node in a CCT stands for a
method that was called during the execution of a test case.
An edge from a parent to a child node signifies that the
parent method called the child method during testing and
a path in the CCT from the root node to a leaf node forms
a requirement rj . This paper uses call tree paths as a test
adequacy criterion because they are efficient to collect and
store, thus enabling the reordering or reducing of a test suite
each time the program under test changes [5, 7].

Although CCTs may be criticized for not incorporating
the (i) source code or parameters of the methods under test
and (ii) state of the program, they have been shown to per-
form closely to other test adequacy criterion with respect
to common fault detection metrics [13]. In fact, in a recent
empirical study, test suites that had been reduced using call
trees as a coverage metric were 97-100% likely to detect each
known fault in the evaluated program [14]. However, as part
of future work, we intend to replicate the experiments with
different test adequacy criteria.

Reduction and Prioritization. When more than one
test covers the same requirement, the tests have an overlap
in coverage that suggests the possibility of removing some
tests while maintaining test suite completeness. Equations 1
through 3 define the coverage, cost, and ratio greedy choice
metrics used by HGS, DGR, GRD, and 2OPT. Although this
paper uses execution time for the cost and ratio GCMs, the
algorithms may employ any “lower is better” quantification
of cost. The techniques also work properly with any type of
test requirement even though we pick CCT paths.

coverage(ti) = |R(ti)| − |R(ti)
\

R(Tr)| (1)

cost(ti) = time(ti) (2)

ratio(ti) =
coverage(ti)

cost(ti)
(3)

Name |T | |R(T)| CCN NCSS

DS 110 40 1.35 1243.00
GB 51 88 2.60 1455.00
JD 54 783 1.64 2716.00
LF 13 6 1.40 215.00
RM 13 19 2.13 569.00
SK 27 117 2.00 628.00
TM 27 46 2.21 748.00
RP 76 221 2.65 6822.00

Table 2: Case Study Applications.

Even though test suite reduction maintains 100% cover-
age of the requirements, it does not guarantee the same fault
detection capabilities as the original test suite [12, 13, 14].
For this reason, some developers prefer test suite prioritiza-
tion techniques that retain all tests while finding an order-
ing Tp that rapidly covers all of the requirements in R(T).
The same approach to reduction can also be leveraged by a
prioritization mechanism. The reduction methods attempt
to produce a Tr that is smaller than the input test suite
T . While reducers ignore the redundant tests, a prioritizer
repeatedly inputs the surplus tests into the reduction algo-
rithm until all of the tests have been added to Tp. As shown
in Figure 1, when given the original test suite T the reduc-
tion algorithm produces the first output Tr1 = 〈t1, t4〉 and
two residual tests t2 and t3. These tests are then once again
passed to the reduction technique, resulting in the second
output Tr2 = 〈t3, t2〉. The concatenation of Tr1 and Tr2

creates the prioritized test suite Tp = 〈t1, t4, t3, t2〉.
The GRD algorithm analyzes the set of tests based on the

cost, coverage, or ratio GCM [9]. When reducing based on
coverage, the algorithm picks the tests that cover the most
additional requirements. For the cost GCM, the algorithm
finds the tests with the lowest execution time. Ratio choices
allow the algorithm to pick the tests that cover the most
requirements per unit cost. The 2OPT algorithm is an all-
pairs greedy approach that compares each pair of tests to all
of the other pairs and selects the best according to a GCM
[9]. Both the GRD and 2OPT algorithms proceed in an
iterative fashion by adding tests to Tr until R(T) = R(Tr).

Since every requirement must be covered by the reduced
test suite, HGS starts to construct Tr by identifying each
requirement rj such that |T (rj)| = 1 [4]. After adding ev-
ery test T (rj) = {ti} to the reduced test suite Tr, HGS
considers each remaining uncovered requirement rj when
|T (rj)| = 2 and it uses a GCM to choose between the cov-
ering test cases. The HGS reducer continues by iteratively
examining the T (rj) of increasing cardinality until all of
the requirements are covered. When the GCM does not en-
able HGS to disambiguate between the tests in T (rj) for
|T (rj)| = `, the algorithm “looks ahead” in order to deter-
mine how the tests fare in covering requirements with ` + 1
covering tests. If HGS performs the maximum number of al-
lowed look aheads without identifying the best test case, the
algorithm arbitrarily selects from those tests that remain.

DGR consults both R(ti) and T (rj) in order to identify
the tests that that will not benefit Tr and the requirements
that the reduced suite already covers [18]. If R(ti) ⊆ R(tk),
then ti does not need to be analyzed for placement in Tr be-
cause as long as tk is included, R(ti) will be covered. Also,
if T (rh) ⊆ T (rj) then rh will be covered as long as rj is cov-
ered. Therefore, rh no longer needs to be considered during
the analysis of T . After test and requirement eliminations
have been made, DGR adds all tests ti where for any j,

Testing Time

. . .

C
ov

er
ed

 T
es

t R
eq

s

PSfrag replacements

t1 Done tn−1 Done

tn Done

Cover R(t1) Cover
Sn−1

i=1 R(ti)

Cover R(T)

Area
R l(n)

0
C(T, l)

C
(T

,l
)

(l)

Figure 2: Coverage Effectiveness.

T (rj) = {ti}. If |T (rj)| 6= 1 for all j after eliminations have
been made, then DGR greedily chooses a test to add to Tr

based on a GCM. These reductions and greedy choices are
repeated until R(T) = R(Tr). If DGR never uses a GCM,
then it returns an optimally small Tr [18].

3. EXPERIMENT GOALS AND DESIGN
Case Study Applications. Each case study applica-

tion contains a JUnit test suite whose test coverage infor-
mation was captured using instrumentation probes [17]. Ta-
ble 2 shows the number of test cases (|T |), number of re-
quirements (|R(T)|), average cyclomatic complexity number
(CCN) across all methods [11], and non-commented source
statements (NCSS) for each of the case study applications.
JDepend (JD) is a Java source code analyzer that measures
several quality attributes of a program. The Transaction-
Manager (TM) is an ATM machine that interacts with a
bank database while the Sudoku (SK) application solves su-
doku puzzles. The DataStructures (DS) application includes
implementations and tests for different data structures (e.g.,
Stacks and LinkedLists). The Reduction and Prioritization
(RP) package contains the implementation and tests for
all of the algorithms described in this paper. LoopFinder
(LF) searches a graph for cycles and Reminder (RM) cre-
ates prompts for specific dates, adds them to a database,
and performs database operations such as queries. Finally,
the GradeBook (GB) application allows for the input, edit-
ing, and statistical analysis of student grades.

Evaluation Metrics. Equation 4 defines RFFS(T, Tr) ∈
[0, 1), the reduction factor for size (RFFS) given a test suite
T and it’s reduced form Tr [12]. Since the RFFS reflects the
percent of original test cases that remain after reduction, an
RFFS of 0 means that the algorithm removed none of the
tests while an RFFS near 1 means that the reducer removed
many tests (an RFFS of 1 is not possible because Tr must
contain at least one test that covers all of the requirements).

RFFS(T, Tr) =
|T | − |Tr |

|T |
(4)

As stated by Equations 5 and 6, RFFT(T, Tr) ∈ [0, 1)
is the reduction factor for time (RFFT) for test suites T

and Tr [5]. An RFFT of 0 signifies that T and Tr execute
for the same length of time (i.e., time(T) − time(Tr) = 0)
while an RFFT of 1 is the impossible case when Tr executes
instantaneously (i.e., time(T) − time(Tr) = time(T)).

time(T) =

|T |
X

i=1

time(ti) (5)

RFFT(T, Tr) =
time(T) − time(Tr)

time(T)
(6)

|metric: cost

alg: 2OPT,GRD

0.2101 0.4946

0.4889

Reduction Factor for Time (RFFT)

|
alg: 2OPT,GRD

metric: cost

metric: coverage
0.1130

0.5967 0.4959

0.6136

Reduction Factor for Size (RFFS)

|
alg: HGS

metric: coverage

alg: DGR

0.7520

0.8231

0.8344 0.9388

Coverage Effectiveness (CE)

(a) (b) (c)

Figure 3: Tree Models for the RFFT, RFFS, and CE Evaluation Metrics.

The coverage effectiveness (CE) metric evaluates a prior-
itized test suite by determining the cumulative coverage of
the tests over time [6]. As defined in Equation 7 and de-
picted in Figure 2, the cumulative coverage function C(T, l)
takes the input of a test suite T and a time l and returns
the total number of requirements covered by T after running
for l time units. To formulate the CE metric, the integral
of C(T, l) is divided by the integral of the ideal cumulative
coverage function C̄(T, l) that Equation 8 defines to imme-
diately cover all of the requirements. Equation (9) shows
that these integrals are taken within the closed interval 0
to l(n) where l(i) is the time required to execute t1, t2, ..., ti

and there are n test cases in the suite. Since many test cov-
erage monitoring tools do not record the point in time when
a test case covers a requirement [7, 15], CE conservatively
credits a test with the coverage of its requirements when it
finishes execution. While CE may be unfair to high coverage
tests with extended running times, the metric does furnish
a time sensitive measurement of effectiveness. In contrast,
prior metrics such as APFD [16], APBC, APDC, and APRC
[9], did not factor time into the evaluation of a prioritiza-
tion technique. Unlike existing evaluation metrics that do
incorporate time (e.g., APFDc [10]), CE obviates the need
to use fault information when calculating effectiveness.

C(T, l) =

8

>

>

>

>

>

<

>

>

>

>

>

:

0 l < l(1)
|R(t1)| l ∈ [l(1), l(2))
..
.

..

.

|
Sn−1

i=1 R(ti)| l ∈ [l(n − 1), l(n))
|R(T)| l ≥ l(n)

(7)

C̄(T, l) = |R(T)| (8)

CE(T) =

R l(n)
0

C(T, l)
R l(n)
0 C̄(T, l)

(9)

Analysis Techniques. As evidenced by Figure 3, this
paper uses automatically generated tree models to describe
the trends in the data sets. In particular, we use the recur-
sive partitioning algorithm [1] to determine how the explana-
tory variables (i.e., greedy choice metric and regression test-
ing technique) impact the evaluation metrics. We selected
this type of hierarchical model because it furnishes a clear
view of the interactions between the GCMs and algorithms.
The root of a tree corresponds to the most important ex-
planatory variable for the given data set. By following a
path from the root to a leaf node, it is possible to deter-
mine the mean value for the specified subset of the data. In
the split points of our trees (e.g., “metric:cost” in the first
model of Figure 3), the word before the colon is a categori-

cal explanatory variable and the word(s) to the right are the
descriptors associated with the left sub-tree. Moreover, the
right sub-tree always corresponds to the data values that are
not included in the split’s descriptor. For instance, the root
of the first tree model indicates that the left sub-tree de-
scribes the RFFT of the cost GCM while the right sub-tree
explains the RFFT for the coverage and ratio metrics. The
first tree in Figure 3 also reveals that 2OPT and GRD have
an average RFFT of .2101 when they use the cost GCM.

Figures 4 through 6 use scatter plots in order to visual-
ize how the evaluation metrics vary for different case study
applications, algorithms, and GCMs. Since certain combi-
nations of a GCM and regression testing technique lead to
the same value for RFFT, RFFS, or CE, we add a small
amount of horizontal spacing in order to avoid overlapping
data points. Figures 7 and 8 use box and whisker plots to
depict the variation in execution time for each of the re-
duction and prioritization algorithms. These plots show the
median value as a filled circle and the inter-quartile range as
a box. Furthermore, these graphs use whiskers to represent
the minimum and maximum execution times.

4. EXPERIMENTAL RESULTS
Reduction. The outcomes in Figure 4 reveal that the

RFFT values vary across case study application. For in-
stance, RM exhibits uniformly low reduction factors while
the reducers are able to discard many of the tests within
the suites of DS, GB, and LF. This phenomenon is due to
the fact that RM has many test cases that perform unique
testing tasks. In contrast, the tests for DS and LF repeat-
edly exercise the same methods with slightly different input
values and GB contains several expensive tests that have
redundant database interactions. Figure 4 also shows that
the coverage and ratio GCMs yield reduced test suites with
similar RFFT values while the cost GCM gives acceptable
results for a few applications (e.g., GB and LF). However,
the cost GCM performs poorly for some case study applica-
tions (e.g., RP, SK, DS, and JD), thus suggesting that the
myopic focus on test execution time may mislead a reducer.
In particular, the tree model in Figure 3(a) confirms that
the combination of either 2OPT or GRD and the cost GCM
leads to an average RFFT of 0.2101.

Overall, the reduction techniques exhibit relatively simi-
lar values for RFFT. For example, Figure 3(a) reveals that
pairing the cost GCM with DGR or HGS leads to an av-
erage RFFT value of 0.4946 while the combination of any
algorithm with either the coverage or ratio GCM gives an av-
erage RFFT of 0.4889. Furthermore, Table 3 furnishes the
average RFFT values across all of the case study applica-

Reduction Technique

R
ed

uc
tio

n
F

ac
to

r
fo

r
T

im
e

(R
F

F
T

)

0.0
0.2
0.4
0.6
0.8
1.0

2OPT DGR GRD HGS

DS GB

2OPT DGR GRD HGS

JD LF

RM

2OPT DGR GRD HGS

RP SK

2OPT DGR GRD HGS

0.0
0.2
0.4
0.6
0.8
1.0

TM

cost coverage ratio

Figure 4: Reduction Factor for Time (RFFT) Across All Applications.

Reduction Technique

R
ed

uc
tio

n
F

ac
to

r
fo

r
S

iz
e

(R
F

F
S

)

0.0

0.2

0.4

0.6

0.8

2OPT DGR GRD HGS

DS GB

2OPT DGR GRD HGS

JD LF

RM

2OPT DGR GRD HGS

RP SK

2OPT DGR GRD HGS

0.0

0.2

0.4

0.6

0.8

TM

cost coverage ratio

Figure 5: Reduction Factor for Size (RFFS) Across All Applications.

tions. This summary table and the scatter plots in Figure 4
support the conclusion that incorporating test case cost im-
proves RFFT. We also note that 2OPT has RFFT values
that increase from 0.208 to 0.476 or 0.491 when we replace
the cost GCM with coverage or ratio, respectively. Even
though 2OPT and GRD see the most improvement from us-
ing ratio instead of coverage, the intrinsically coverage-based
HGS still exhibits a minor increase in RFFT.

As demonstrated by the scatter plots in Figures 4 and 5,
many applications have higher values for RFFS than RFFT.
This result suggests that it is easier to find a small reduced
test suite than it is to identify a Tr that will decrease testing
time. In fact, the DGR algorithm displays invariant perfor-
mance across all three choice metrics because it identifies
optimally small test suites for each case study application
and thus avoids the invocation of a GCM. Interestingly, Ta-
ble 3 shows that DGR’s optimal RFFS of 0.614 corresponds
to an RFFT of 0.477 that is less than the 0.512 RFFT as-
sociated with using HGS and the ratio GCM. Thus, the
empirical results highlight the fact that an optimally small
test suite may not be the fastest collection of test cases.

The tree model in Figure 3(b) and the plots in Figure 5
also establish that for all applications except LF, the cost
GCM leads to low RFFS values for the 2OPT and GRD
algorithms. In contrast, HGS is impervious to the mislead-

ing cost GCM because it focuses on coverage information
during each iteration. We also see that pairing 2OPT or
GRD with the cost and ratio GCMs yields varying results.
For instance, the ratio GCM leads to lower RFFS values for
RP, DS, GB, and JD and similar levels for RM, SK, TM,
GB, and LF. Overall, the tree models in Figures 3(a) and
(b) confirm that it is reasonable to select the ratio GCM
when using 2OPT and/or GRD because this choice metric
gives relatively high values for both RFFT and RFFS. Us-
ing 2OPT or GRD with the coverage GCM or picking either
DGR or HGS is most appropriate for situations in which it
is important to maximize RFFS (e.g., when test cost data
is unavailable or tests run in a memory constrained environ-
ment [8]). Moreover, the tree in Figure 3(b) substantiates
the claims made by Harrold et al. [4] and Tallam and Gupta
[18]: with an average RFFS of .6136, HGS and DGR are the
best methods for reducing the size of a regression test suite.

Prioritization. Figure 6 highlights the fact that, with
the exception of the smallest application called LF, the pri-
oritizers create test orderings that exhibit some variability
in their CE scores. For different configurations of the pri-
oritizers, RM, RP, and SK have variation in the CE values
because their test cases display the most trade-offs in test
cost and coverage. We also observe that RM, RP, and SK
have lower CE values when the algorithm uses the coverage

Prioritization Technique

C
ov

er
ag

e
E

ffe
ct

iv
en

es
s

(C
E

)

0.4
0.5
0.6
0.7
0.8
0.9
1.0

2OPT DGR GRD HGS

DS GB

2OPT DGR GRD HGS

JD LF

RM

2OPT DGR GRD HGS

RP SK

2OPT DGR GRD HGS

0.4
0.5
0.6
0.7
0.8
0.9
1.0

TM

cost coverage ratio

Figure 6: Coverage Effectiveness (CE) Across All Applications.

GCM, further suggesting that the applications have high
cost tests that also cover many requirements. Interestingly,
when the ratio GCM combines cost and coverage informa-
tion, it moderates the shortsighted focus on coverage and
leads to high CE values for all applications. For instance,
Figure 6 shows that when 2OPT and GRD use the ratio
GCM instead of cost or coverage, the CE values for JD in-
crease markedly. Table 3 also points out that, across all of
the applications, the CE values for 2OPT and GRD increase
from 0.921 to 0.957 when ratio replaces the cost GCM.

The scatter plots in Figure 6 and the summary values
in Table 3 further reveal that 2OPT and GRD consistently
obtain the highest CE scores. We see that for all but GB,
JD, and LF, the DGR prioritizer ties or does better than
HGS. The tree model in Figure 3(c) furnishes additional
evidence of this empirical trend: HGS has an average CE
value of 0.7520 while the other configurations yield average
CE values ranging from 0.8231 to 0.8388. Finally, Table 4
shows each technique and GCM that results in a lower CE
than the initial (INIT) and reverse (REV) orderings for each
application. Notice that 2OPT and GRD combined with
ratio are the only techniques that never create a prioritized
test suite that is worse than the REV or INIT orderings.

Figures 7 and 8 give the execution time (in milliseconds)
for the reduction and prioritization methods. These box
and whisker plots clearly demonstrate that the regression
testing methods execute efficiently for all of the case study
applications. For example, no run of a reducer or prioritizer
consumes more than 150 milliseconds. However, we note
that GRD and HGS tend to be the most efficient techniques
with 2OPT and DGR exhibiting both higher time overheads
and greater variability across trial runs and GCMs. Overall,
these efficiency and effectiveness results indicate that 2OPT
and GRD are ideal algorithms for development environments
that only use prioritization techniques. Alternatively, DGR
is a good candidate for both reduction and prioritization
since it leads to moderate values for all three of the eval-
uation metrics. Finally, the experiments demonstrate that
while HGS performs well when it rapidly reduces a test suite,
it exhibits lackluster CE scores when it is invoked repeatedly
as part of test prioritization routine.

5. RELATED WORK
Due to space constraints, this paper briefly reviews the

most relevant research. While Malishevsky et al. also de-

Technique Greedy-by RFFT RFFS CE

2OPT cost 0.208 0.108 0.921
2OPT coverage 0.476 0.581 0.818
2OPT ratio 0.491 0.431 0.957

DGR cost 0.477 0.614 0.834
DGR coverage 0.477 0.614 0.834
DGR ratio 0.477 0.614 0.834

GRD cost 0.212 0.118 0.921
GRD coverage 0.489 0.612 0.817
GRD ratio 0.500 0.561 0.957

HGS cost 0.512 0.612 0.753
HGS coverage 0.489 0.614 0.751
HGS ratio 0.512 0.614 0.753

Table 3: Average Values for RFFT, RFFS, and CE.

Technique GCM REV INIT

2OPT cost JD -
2OPT coverage RP, RM, JD SK
2OPT ratio - -
DGR all RM, RP, JD SK
GRD cost JD -
GRD coverage RM, RP, JD SK
GRD ratio - -
HGS all RM, RP, JD RP, SK, TM

Table 4: Comparison to Reverse and Initial.

scribe prioritizers that incorporate test case cost [10], Sec-
tion 1 notes that our work differs in several key ways (e.g.,
we focus on both reduction and prioritization). Similar to
the present work, Do et al. consider the prioritization of
JUnit test suites yet without including test case costs [2].
Although both Do et al. and Elbaum et al. include many
different algorithms in a empirical study of prioritizers [2,
3], their investigations do not handle reduction or evaluate
either 2OPT or the repeated invocation of HGS and DGR.

6. CONCLUSIONS AND FUTURE WORK
This paper describes the extension and evaluation of four

existing algorithms for regression testing (e.g., HGS, DGR,
GRD, and 2OPT). Even though the reduction and prioriti-
zation techniques typically focus on the coverage of a test
suite, we enable them to use greedy choice metrics that con-
sider both test case cost and the ratio of coverage to cost.
Using a variety of visualizations and analysis techniques
(e.g., automatically generated tree models, scatter plots, and
box and whisker plots), we identify fundamental trade-offs

Reduction Technique

E
xe

cu
tio

n
T

im
e

(m
s)

0

20

40

60

80

2OPT DGR GRD HGS

DS

2OPT DGR GRD HGS

GB

2OPT DGR GRD HGS

JD

2OPT DGR GRD HGS

LF

RM RP SK

0

20

40

60

80

TM

Figure 7: Reduction Time Across All Applications.

Prioritization Technique

E
xe

cu
tio

n
T

im
e

(m
s)

0

20

40

60

80

100

2OPT DGR GRD HGS

DS

2OPT DGR GRD HGS

GB

2OPT DGR GRD HGS

JD

2OPT DGR GRD HGS

LF

RM RP SK

0

20

40

60

80

100

TM

Figure 8: Prioritization Time Across All Applications.

in the efficiency and effectiveness of the testing methods.
For instance, the experiments revealed the fact that an op-
timally small test suite may not contain the fastest set of test
cases. We also found that pairing the 2OPT and GRD algo-
rithms with the ratio GCM leads to test prioritizations with
high coverage effectiveness values that are also greater than
the scores associated with the reverse and initial orderings.
Moreover, the empirical study demonstrates that the algo-
rithms operate efficiently for each case study application.
As part of future work, we intend to evaluate the reduc-
tion and prioritization mechanisms with larger case study
applications. Furthermore, we will use fault databases and
mutation testing tools to determine how the techniques fare
in creating test suites that effectively detect defects. Finally,
we plan to improve the evaluation process by employing ad-
ditional statistical analyses (e.g., multiple comparisons with
an analysis of variance and the Tukey post-hoc test).

7. REFERENCES
[1] M. J. Crawley. The R Book. John Wiley & Sons, Inc., 2007.
[2] H. Do, G. Rothermel, and A. Kinneer. Empirical studies of

test case prioritization in a JUnit testing environment. In
Proc. of ISSRE, 2004.

[3] S. Elbaum, A. Malishevsky, and G. Rothermel. Test case
prioritization: A family of empirical studies. IEEE TSE,
28(2), 2002.

[4] M. J. Harrold, R. Gupta, and M. L. Soffa. A methodology
for controlling the size of a test suite. ACM TOSEM, 2(3),
1993.

[5] G. M. Kapfhammer. A Comprehensive Framework for
Testing Database-Centric Applications. PhD thesis,
University of Pittsburgh, Pittsburgh, Pennsylvania, 2007.

[6] G. M. Kapfhammer and M. L. Soffa. Using coverage

effectiveness to evaluate test suite prioritizations. In Proc.
of WEASELTech, 2007.

[7] G. M. Kapfhammer and M. L. Soffa. Database-aware test
coverage monitoring. In Proc. of ISEC, 2008.

[8] G. M. Kapfhammer, M. L. Soffa, and D. Mosse. Testing in
resource constrained execution environments. In Proc. of
ASE, 2005.

[9] Z. Li, M. Harman, and R. M. Hierons. Search algorithms for
regression test case prioritization. IEEE TSE, 33(4), 2007.

[10] A. G. Malishevsky, J. Ruthruff, G. Rothermel, and
S. Elbaum. Cost-cognizant test case prioritization.
Technical Report TR-UNL-CSE-2006-0004, University of
Nebraska - Lincoln, 2006.

[11] T. J. McCabe and C. W. Butler. Design complexity
measurement and testing. CACM, 32(12), 1989.

[12] S. McMaster and A. Memon. Call stack coverage for test
suite reduction. In Proc. of ICSM, 2005.

[13] S. McMaster and A. Memon. Call stack coverage for GUI
test-suite reduction. In Proc. of ISSRE, 2006.

[14] S. McMaster and A. M. Memon. Fault detection
probability analysis for coverage-based test suite reduction.
In Proc. of ICSM, 2007.

[15] J. Misurda, J. A. Clause, J. L. Reed, B. R. Childers, and
M. L. Soffa. Demand-driven structural testing with
dynamic instrumentation. In Proc. of ICSE, 2005.

[16] G. Rothermel, R. H. Untch, C. Chu, and M. J. Harrold.
Prioritizing test cases for regression testing. IEEE TSE,
27(10), 2001.

[17] A. Smith, J. Geiger, G. M. Kapfhammer, and M. L. Soffa.
Test suite reduction and prioritization with call trees. In
Proc. of ASE, 2007.

[18] S. Tallam and N. Gupta. A concept analysis inspired
greedy algorithm for test suite minimization. In Proc. of
PASTE, 2005.

