Do Redundant Mutants Affect the Effectiveness and Efficiency of Mutation Analysis?

René Just¹ & Gregory M. Kapfhammer² & Franz Schweiggert¹

¹Ulm University, Germany ²Allegheny College, USA

7th International Workshop on Mutation Analysis Montreal, Canada April 17, 2012

Conclusion

Overview of the Presentation

Challenges in Mutation Analysis

Just & Kapfhammer & Schweiggert

Ulm University, Allegheny College

Operator 0000 Empirical Study

Conclusion

Overview of the Presentation

Just & Kapfhammer & Schweiggert

Ulm University, Allegheny College

Operator 0000 Empirical Study

Conclusion

Overview of the Presentation

Just & Kapfhammer & Schweiggert

Ulm University, Allegheny College

Empirical Study

Conclusion

Overview of the Presentation

Just & Kapfhammer & Schweiggert

Ulm University, Allegheny College

Empirical Study

Conclusion

Overview of the Presentation

Just & Kapfhammer & Schweiggert

Ulm University, Allegheny College

Empirical Study

Conclusion

Overview of the Presentation

Just & Kapfhammer & Schweiggert

Ulm University, Allegheny College

Empirical Study

Conclusion

Overview of the Presentation

Redundant mutants

Just & Kapfhammer & Schweiggert

Ulm University, Allegheny College

Empirical Study

Conclusion

Overview of the Presentation

Redundant mutants

Operator for Conditional Expressions without redundancy

Just & Kapfhammer & Schweiggert

Ulm University, Allegheny College

Empirical Study

Conclusion

Overview of the Presentation

Redundant mutants

Just & Kapfhammer & Schweiggert

Ulm University, Allegheny College

Empirical Study

Conclusion

Overview of the Presentation

Redundant mutants

Just & Kapfhammer & Schweiggert

Ulm University, Allegheny College

Empirical Study

Conclusion

Overview of the Presentation

Redundant mutants

Empirical Study on the impact of redundant mutants

Just & Kapfhammer & Schweiggert

Ulm University, Allegheny College

Empirical Study

Conclusion

Overview of the Presentation

Just & Kapfhammer & Schweiggert

Ulm University, Allegheny College

Empirical Study

Conclusion

Overview of the Presentation

Just & Kapfhammer & Schweiggert

Ulm University, Allegheny College

Empirical Study

Conclusion

Overview of the Presentation

Just & Kapfhammer & Schweiggert

Ulm University, Allegheny College

Empirical Study

Conclusion

Overview of the Presentation

Just & Kapfhammer & Schweiggert

Ulm University, Allegheny College

Conclusion

Mutating Conditional Expressions

Just & Kapfhammer & Schweiggert

Ulm University, Allegheny College

Conclusion

Mutating Conditional Expressions

Just & Kapfhammer & Schweiggert

Ulm University, Allegheny College

Conclusion

Mutating Conditional Expressions

Just & Kapfhammer & Schweiggert

Ulm University, Allegheny College

Conclusion

Mutating Conditional Expressions

Just & Kapfhammer & Schweiggert

Ulm University, Allegheny College

Conclusion

Mutating Conditional Expressions

Just & Kapfhammer & Schweiggert

Ulm University, Allegheny College

Conclusion

Mutating Conditional Expressions

Just & Kapfhammer & Schweiggert

Ulm University, Allegheny College

Mutating Conditional Expressions

Just & Kapfhammer & Schweiggert

Ulm University, Allegheny College

Empirical Study

Conclusion

Mutating Conditional Expressions

Lite	erals	Expression
а	b	a && b
0 0 1 1	0 1 0 1	0 0 0 1
Lite	erals	Expression
Lite	erals b	Expression a b

Just & Kapfhammer & Schweiggert

Ulm University, Allegheny College

Conclusion

Mutating Conditional Expressions

Lite	rals	Expression	ı							
a	b	a && b	false	lhs	rhs	a == b a b	a != b	true !a &8	b !(a && b)	a && !b
0 0 1 1	0 1 0 1	0 0 0 1	0 0 0 0	0 0 1 1	0 1 0 1	1 0 0 1 0 1 1 1	0 1 1 0	1 0 1 1 1 0 1 0	1 1 1 0	0 0 1 0
Lite	rals	Expression	1							
a	b	a b	a != b	rhs	lhs	true a && b	a == b	false la	b !(a b)	a ∥ !b
0 0 1	0 1 0	0 1 1	0 1 1 0	0 1 0 1	0 0 1 1	1 0 1 0 1 0 1 1	1 0 0 1	0 1 0 1 0 0	1 0 0	1 0 1

Just & Kapfhammer & Schweiggert

Ulm University, Allegheny College

Conclusion

Mutating Conditional Expressions

Lite	erals	Expression	S	Sufficient mutations			Subsumed mutations			Subsumed operator UOI		
а	b	a && b	false	lhs	rhs	a == b a b	a != b	true	!a && b	!(a && b)	a && !b	
0 0 1 1	0 1 0 1	0 0 0 1	0000	$0 \\ 0 \\ 1 \\ 1$	0 1 0 1	$ \begin{array}{c c} 1 & 0 \\ 0 & 1 \\ 0 & 1 \\ 1 & 1 \end{array} $	0 1 1 0	1 1 1	0 1 0 0	1 1 1 0	0 0 1 0	

Lite	rals	Expression	Suf	Sufficient mutations			umed muta	tions Subs	Subsumed operator UOI		
а	b	a b	a != b	rhs	lhs	true a && b	a == b	false !a b	!(a b)	a ∥ !b	
0 0 1 1	0 1 0 1	0 1 1 1		0 1 0 1	0 0 1 1	$ \begin{array}{c c} 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 1 \end{array} $	1 0 0 1	0 1 0 1 0 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1	1 0 0 0	1 0 1 1	

Just & Kapfhammer & Schweiggert

Ulm University, Allegheny College

Mutating Conditional Expressions

4 Mutants are sufficient

Lite	rals	Expression	Sufficient mutations		Subsumed mutations			Subsumed operator UOI				
а	b	a && b	false	lhs	rhs	a == b	a∥b	a != b	true	!a && b	!(a && b)	a && !b
0 0 1 1	0 1 0 1	0 0 0 1	0000	0 0 1 1	0 1 0 1	(1) 0 0 1	0 1 1 1	0 1 1 0	1 1 1	0 1 0 0	1 1 1 0	0 0 1 0

Lite	rals	Expression	Suf	ficient ı	nutatio	ns	Subsu	med muta	tions	Subs	umed operate	or UOI
a	b	a b	a != b	rhs	lhs	true	a && b	a == b	false	!a∥b	!(a b)	a !b
0 0 1 1	0 1 0 1	0 1 1 1		0 1 0 1	0 0 1 1	$\bigcirc 1\\1\\1\\1$	0 0 0	1 0 0	0 0 0 0	1 1 0 1	1 0 0 0	1 0 1 1

Just & Kapfhammer & Schweiggert

Ulm University, Allegheny College

Conclusion

Mutating Conditional Expressions

4 Mutants are sufficient

UOI Operator completely subsumed

Lite	rals	Expression	Sufficient mutations		Subsumed mutations			Subsumed operator UOI				
а	b	a && b	false	lhs	rhs	a == b	a∥b	a != b	true	!a && b	!(a && b)	a && !b
0 0 1 1	0 1 0 1	0 0 0 1	0000	0 (1) 1	0 (1) 0 1	() 0 0 1	0 1 1 1	0 1 1 0	1 1 1	0 1 0 0	1 1 1 0	0 0 1 0

Lite	erals	Expression	Suf	ficient ı	nutatio	ns	Subsu	med muta	tions	Subsu	umed operate	or UOI
а	b	a b	a != b	rhs	lhs	true	a && b	a == b	false	!a∥b	!(a b)	a !b
0 0 1 1	0 1 0 1	0 1 1 1		0 1 0 1	0 0 1 1	$\begin{array}{c} 1\\1\\1\\1\end{array}$	0 0 0 1	1 0 0	0 0 0	1 1 0 1	1 0 0 0	1 0 1 1

Just & Kapfhammer & Schweiggert

Ulm University, Allegheny College

Conclusion

Mutating Conditional Expressions

4 Mutants are sufficient

UOI Operator completely subsumed

Lite	erals	Expression	Sufficient mutations			Subsumed mutations			Subsumed operator UOI			
а	b	a && b	false	lhs	rhs	a == b	a∥b	a != b	true	!a && b	!(a && b)	a && !b
0 0 1 1	0 1 0 1	0 0 0 1	0 0 0	0 (1) 1	0 1 0 1	(1) 0 0 1	0 1 1 1	0 1 1 0	1 1 1	0 1 0 0	1 1 1 0	0 0 1 0

Lite	erals	Expression	Suf	Sufficient mutations			Subsumed mutations			Subsumed operator UOI		
а	b	a b	a != b	rhs	lhs	true	a && b	a == b	false	!a∥b	!(a b)	a !b
0 0 1	0 1 0 1	0 1 1 1	$\begin{vmatrix} 0\\1\\0 \end{vmatrix}$	0 1 0 1	$\overset{0}{\overset{0}{\underset{1}{\overset{0}{}}}}$	$\begin{pmatrix} 1\\ 1\\ 1\\ 1\\ 1 \end{pmatrix}$	0 0 0	1 0 0	0 0 0	1 1 0 1	1 0 0 0	1 0 1 1

A reduction of exactly 60% ?

Just & Kapfhammer & Schweiggert

Ulm University, Allegheny College

Conclusion

Mutating Conditional Expressions

Two common patterns for short-circuit operators

Just & Kapfhammer & Schweiggert

Ulm University, Allegheny College

Operator

Empirical Study

Conclusion

Mutating Conditional Expressions

Two common patterns for short-circuit operators

```
public void foo(int x) {
    Var v;
    if(flag&& (v=getVar())!=null)
    {
        v.bar(x);
    }
    ...
}
```

Just & Kapfhammer & Schweiggert

Ulm University, Allegheny College

Operator

Empirical Study

Conclusion

Mutating Conditional Expressions

Two common patterns for short-circuit operators

```
public void foo(int x) {
    Var v;
    if(flag&& (v=getVar())!=null)
    {
        v.bar(x);
    }
    ...
}
```

Just & Kapfhammer & Schweiggert

Ulm University, Allegheny College

Operator

Empirical Study

Conclusion

Mutating Conditional Expressions

Two common patterns for short-circuit operators

Just & Kapfhammer & Schweiggert

Ulm University, Allegheny College

Operator

Empirical Study

Conclusion

Mutating Conditional Expressions

Two common patterns for short-circuit operators

Just & Kapfhammer & Schweiggert

Ulm University, Allegheny College

Operator 0000 Empirical Study

Conclusion

Mutating Conditional Expressions

Two common patterns for short-circuit operators

Just & Kapfhammer & Schweiggert

Ulm University, Allegheny College

Operator 0000 Empirical Study

Conclusion

Mutating Conditional Expressions

Two common patterns for short-circuit operators

Just & Kapfhammer & Schweiggert

Ulm University, Allegheny College

Operator

Empirical Study

Conclusion

Mutating Conditional Expressions

Two common patterns for short-circuit operators

Just & Kapfhammer & Schweiggert

Ulm University, Allegheny College

Operator

Empirical Study

Conclusion

Mutating Conditional Expressions

Two common patterns for short-circuit operators

Just & Kapfhammer & Schweiggert

Ulm University, Allegheny College

Conclusion

Mutating Conditional Expressions

Two common patterns for short-circuit operators

Just & Kapfhammer & Schweiggert

Ulm University, Allegheny College

Conclusion

Mutating Conditional Expressions

Two common patterns for short-circuit operators

Just & Kapfhammer & Schweiggert

Ulm University, Allegheny College

Empirical Study

Conclusion

COR and ROR Mutation Operators

Just & Kapfhammer & Schweiggert

Ulm University, Allegheny College

Empirical Study

Conclusion

COR and ROR Mutation Operators

Just & Kapfhammer & Schweiggert

Ulm University, Allegheny College

Empirical Study

Conclusion

COR and ROR Mutation Operators

Just & Kapfhammer & Schweiggert

Ulm University, Allegheny College

Empirical Study

Conclusion

COR and ROR Mutation Operators

Just & Kapfhammer & Schweiggert

Ulm University, Allegheny College

Empirical Study

Conclusion

COR and ROR Mutation Operators

How prevalent are COR and ROR mutants?

Just & Kapfhammer & Schweiggert

Ulm University, Allegheny College

Investigated Applications

	Files	LOC	Tests	Mutants Generated	Mutants Covered
commons-math	408	39,991	2,169	80,372	72,203
commons-lang	99	19,495	2,039	31,130	29,069
commons-io	100	7,908	309	9,547	4,935
numerics4j	73	3,647	218	6,835	6,547

Just & Kapfhammer & Schweiggert

Ulm University, Allegheny College

Investigated Applications

	Files	LOC	Tests	Mutants Generated	Mutants Covered
commons-math	408	39,991	2,169	80,372	72,203
commons-lang	99	19,495	2,039	31,130	29,069
commons-io	100	7,908	309	9,547	4,935
numerics4j	73	3,647	218	6,835	6,547

Application differ in size and complexity

Just & Kapfhammer & Schweiggert

Ulm University, Allegheny College

Investigated Applications

	Files	LOC	Tests	Mutants Generated	Mutants Covered
commons-math	408	39,991	2,169	80,372	72,203
commons-lang	99	19,495	2,039	31,130	29,069
commons-io	100	7,908	309	9,547	4,935
numerics4j	73	3,647	218	6,835	6,547

Application differ in size and complexity Differences in mutation coverage

Just & Kapfhammer & Schweiggert

Ulm University, Allegheny College

Investigated Applications

	Files	LOC	Tests	Mutants Generated	Mutants Covered
commons-math	408	39,991	2,169	80,372	72,203
commons-lang	99	19,495	2,039	31,130	29,069
commons-io	100	7,908	309	9,547	4,935
numerics4j	73	3,647	218	6,835	6,547

Application differ in size and complexity Differences in mutation coverage

How prevalent are COR and ROR mutants?

Just & Kapfhammer & Schweiggert

Ulm University, Allegheny College

Empirical Study

Conclusion

Ratio of COR and ROR Mutants

Just & Kapfhammer & Schweiggert

Ulm University, Allegheny College

Empirical Study

Conclusion

Ratio of COR and ROR Mutants

Just & Kapfhammer & Schweiggert

Ulm University, Allegheny College

Empirical Study

Conclusion

Ratio of COR and ROR Mutants

Just & Kapfhammer & Schweiggert

Ulm University, Allegheny College

Empirical Study

Conclusion

Ratio of COR and ROR Mutants

Just & Kapfhammer & Schweiggert

Ulm University, Allegheny College

Empirical Study

Conclusion

Decrease in Number of Mutants

	Generated (original set)	Generated (reduced set)	Covered (original set)	Covered (reduced set)
commons-math commons-lang	80,372	66,787 (-16.9%)	72,203	59,195 (-18.0%)
	31,130	21,074 (-32.3%)	29,069	19,112 (-34.3%)
commons-io	9,547	7,319 (-23.3%)	4,935	4,168 (-15.5%)
numerics4j	6,835	5,437 (-20.5%)	6,547	5,149 (-21.4%)

Just & Kapfhammer & Schweiggert

Ulm University, Allegheny College

Empirical Study

Conclusion

Decrease in Number of Mutants

Overall reduction of up to 34%

	Generated (original set)	Generated (reduced set)	Covered (original set)	Covered (reduced set)
commons-math	80,372	66,787 (-16.9%)	72,203	59,195 (-18.0%)
commons-lang	31,130	21,074 (-32.3%)	29,069	19,112 (-34.3%)
commons-io	9,547	7,319 (-23.3%)	4,935	4,168 (-15.5%)
numerics4j	6,835	5,437 (-20.5%)	6,547	5,149 (-21.4%)

Just & Kapfhammer & Schweiggert

Ulm University, Allegheny College

Empirical Study

Conclusion

Decrease in Number of Mutants

Overall reduction of up to 34% Depends on mutation coverage

	Generated (original set)	Generated (reduced set)	Covered (original set)	Covered (reduced set)
commons-math	80,372	66,787 (-16.9%)	72,203	59,195 (-18.0%)
commons-lang	31,130	21,074 (-32.3%)	29,069	19,112 (-34.3%)
commons-io	9,547	7,319 (-23.3%)	4,935	4,168 (-15.5%)
numerics4j	6,835	5,437 (-20.5%)	6,547	5,149 (-21.4%)

Just & Kapfhammer & Schweiggert

Ulm University, Allegheny College

Conclusion

Decrease in Number of Mutants

Overall reduction	
of up to 34%	

Depends on mutation coverage

	Generated (original set)	Generated (reduced set)	Covered (original set)	Covered (reduced set)
commons-math	80,372	66,787 (-16.9%)	72,203	59,195 (-18.0%)
commons-lang	31,130	21,074 (-32.3%)	29,069	19,112 (-34.3%)
commons-io	9,547	7,319 (-23.3%)	4,935	4,168 (-15.5%)
numerics4j	6,835	5,437 (-20.5%)	6,547	5,149 (-21.4%)

How much is the saving in runtime?

Just & Kapfhammer & Schweiggert

Ulm University, Allegheny College

Empirical Study

Conclusion

Runtime Improvement

	Runtime (original set)	Runtime (reduced set)
commons-math	300.77	271.10 (-09.9%)
commons-lang	28.25	18.70 (-33.8%)
commons-io	6.95	4.58 (-34.1%)
numerics4j	2.85	2.08 (-26.9%)

Just & Kapfhammer & Schweiggert

Ulm University, Allegheny College

Empirical Study

Conclusion

Runtime Improvement

Divergence due to differences in test suite runtime and coverage

	Runtime (original set)	Runtime (reduced set)
commons-math	300.77	271.10 (-09.9%)
commons-lang	28.25	18.70 (-33.8%)
commons-io	6.95	4.58 (-34.1%)
numerics4j	2.85	2.08 (-26.9%)

Just & Kapfhammer & Schweiggert

Ulm University, Allegheny College

Empirical Study

Conclusion

Runtime Improvement

Divergence due to differences in test suite runtime and coverage

	Runtime (original set)	Runtime (reduced set)
commons-math	300.77	271.10 (-09.9%)
commons-lang	28.25	18.70 (-33.8%)
commons-io	6.95	4.58 (-34.1%)
numerics4j	2.85	2.08 (-26.9%)

Significant speed-up for all applications

Just & Kapfhammer & Schweiggert

Ulm University, Allegheny College

Empirical Study

Conclusion

Accuracy of the Mutation Score

	Mutation Score (original set)	Mutation Score (reduced set)
commons-math	0.77	0.73 (- 4.5%)
commons-lang	0.76	0.67 (-10.7%)
commons-io	0.41	0.44 (8.3%)
numerics4j	0.69	0.65 (- 5.9%)

Just & Kapfhammer & Schweiggert

Ulm University, Allegheny College

Operator 0000 Empirical Study

Conclusion

Accuracy of the Mutation Score

Mutation Score up to 10% overestimated

	Mutation Score (original set)	Mutation Score (reduced set)
commons-math	0.77	0.73 (- 4.5%)
commons-lang	0.76	0.67 (-10.7%)
commons-io	0.41	0.44(8.3%)
numerics4j	0.69	0.65 (- 5.9%)

Just & Kapfhammer & Schweiggert

Ulm University, Allegheny College

Intro	bd	u	С	ti	0	n
00						

Accuracy of the Mutation Score

overestimated		to underestimation
	Mutation Score (original set)	Mutation Score (reduced set)

	(original set)	(reduced set)
commons-math	0.77	0.73 (- 4.5%)
commons-lang	0.76	0.67 (-10.7%)
commons-io	0.41	0.44(8.3%)
numerics4j	0.69	0.65 (- 5.9%)

Just & Kapfhammer & Schweiggert

Ulm University, Allegheny College

Intro	bd	u	С	ti	0	n
00						

Accuracy of the Mutation Score

Mutation Score	Low mutation
up to 10%	coverage may lead
overestimated	to underestimation

	Mutation Score (original set)	Mutation Score (reduced set)
commons-math	0.77	0.73 (- 4.5%)
commons-lang	0.76	0.67 (-10.7%)
commons-io	0.41	0.44(8.3%)
numerics4j	0.69	0.65 (- 5.9%)

Redundant mutants tend to overestimate the mutation score

Just & Kapfhammer & Schweiggert

Ulm University, Allegheny College

Conclusion

Conclusion and Future Work

Conclusion:

- Operator for conditional expressions without redundancy
- Decreased number of mutants and improved runtime
- Increased accuracy of the mutation score

Just & Kapfhammer & Schweiggert

Ulm University, Allegheny College

Conclusion

Conclusion and Future Work

Conclusion:

- Operator for conditional expressions without redundancy
- Decreased number of mutants and improved runtime
- Increased accuracy of the mutation score

Future Work:

- Investigate redundancies in other mutation operators
- Analyze whether sufficient mutants tend to be equivalent
- Apply constraint solver to identify equivalent mutants

Just & Kapfhammer & Schweiggert

Do Redundant Mutants Affect the Effectiveness and Efficiency of Mutation Analysis?

Thank you for your attention!

Questions?

http://www.mathematik.uni-ulm.de/sai/major